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Semisimplicity and Reduction of p-adic
Representations of Topological Monoids

Tomoki Mihara *

Abstract

We study relations between several p-adic variants of the semisimplicity of Ba-
nach algebras, Banach modules, unitary Banach representations, and the reductions
of them. We give a criterion of the semisimplicity of a p-adic unitary representation
of a topological monoid by using the reduction of the associated operator algebra.
It yields an algorithm for determining whether a given finite dimensional p-adic
unitary Banach representation of a compact p-adic Lie group is presentable as the
orthogonal direct sum of absolutely irreducible subrepresentations or not.
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Introduction

Let k be a complete valuation field with valuation ring k(1) and residue field &, and
G a topological monoid. Unlike a unitary C-linear representation of a locally compact
group, a Banach k-linear representation of G is not necessarily completely reducible even
though suitable conditions on G and the representation are assumed. This causes diffi-
culty in an appropriate formulation of a C*-algebra and a von-Neumann algebra over £.
We are interested in operator algebra theory in the non-Archimedean setting, and seek a
formulation of such operator algebras associated to G possessing much information on
semisimplicity representations. We note that there are several formulation of operator al-
gebras associated to G under suitable conditions such as the Iwasawa algebra associated
to a profinite group (cf. [ST02] Theorem 2.3) and the three types of multiplier Banach—
Hopf algebras over & associated to several topological groups (cf. Introduction in [Koc]),
and we seek another formulation which specialises in semisimple representations.

For this purpose, we study the semisimplicity of a finite dimensional Banach k-linear
representation using tools which are only applicable to the non-Archimedean setting, e.g.
the reduction. It is difficult to determine the semisimplicity of a unitary Banach k-linear
representation of G from the information of its reduction, because it only reflects the ac-
tion of the reduction A[G] of the canonical integral model k°[G] c k[G]. On the other
hand, for a given unitary Banach k-linear representation V' of G, the operator algebra
C*(G, V) given as the closure of the image of k[G] in the full operator algebra (V) ad-
mits a canonical integral model for which the reduction possesses much more information
on the semisimplicity.

The aim of this paper is to give an algorithm (RR) for computing the reduction of
C*(G, V) and determining whether a given finite dimensional unitary Banach k-linear rep-
resentation of G is semisimple in a strong sense, i.e. is presentable as the orthogonal direct
sum of absolutely irreducible subrepresentations under the assumption that k& is a local
field and G lies in a certain class of profinite groups containing that of compact p-adic
Lie groups. See Theorem 3.16. We also have an algorithm (R1) for determining whether
a given finite dimensional unitary Banach k-linear representation of G is absolutely irre-
ducible under the same assumption. See Theorem 3.14. We note that the algorithm (RR)
for the semisimplicity in the strong sense is a generalisation of the algorithm for the uni-
tary diagonalisability of a matrix in [Mih16] Theorem 2.23. Indeed, an M € M, (k) with
n € N\ {0} is diagonalisable by a unitary matrix (cf. [Mih16] p. 762) if and only if the
n-dimensional unitary Banach k-linear representation Z, X k* — k", (i,v) = (1 + 7, M)'v
of the compact p-adic Lie group Z, is presentable as the orthogonal direct sum of ab-
solutely irreducible subrepresentations for a sufficiently large » € N\ {0}, where 7y is a
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uniformiser of the local field £.

In order to give an algorithm, we study relations between several variants of the
semisimplicity of Banach k-algebras, Banach modules over them, unitary Banach k-linear
representations, and the reductions of them. Compared with the variants of the semisim-
plicity of unitary Banach k-linear representations, those of Banach k-algebras and Banach
modules over them behave very well with respect to the reductions. For example, the the-
ory on the lifting property of idempotents with respect to the quotient modulo a regular
ideal in [Azu51] Theorem 24 helps us to decompose Banach k-algebras, and decomposi-
tions of Banach k-algebras yield decompositions of Banach modules over them.

We note that the semisimplicity of a finite dimensional Banach k-linear representation
is itself interesting in the context away form the study on operator algebra theory, and is
helpful for an explicit computation because the decomposition into the direct sum of
isotypic components reduces the dimension. For example, there are several well-known
variants of conjectures called the semisimplicity conjecture (cf. Introduction in [Fu01]),
which state the semisimplicity of representations related to Galois representations, e.g.
actions of Frobenius automorphisms.

We explain the contents of this paper. First, §1 consists of three subsections. In §1.1,
we recall theory on semisimple modules. In §1.2, we study semisimple modules whose
simple submodules are absolutely simple, and recall semisimple smooth representations.
In §1.3, we recall the semisimplicity and the reductions of unitary Banach k-linear rep-
resentations. Next, §2 consists of two subsections. In §2.1, we recall Banach k-algebras
and Banach modules over them, and introduce several variants of the semisimplicity of
them. In §2.2, we introduce operator algebras associated to Banach modules over Banach
k-algebras, and study relations between the semisimplicity of Banach modules and oper-
ator algebras associated to them. Finally, §3 consists of three subsections. In §3.1, we
study the relation of the semisimplicity of Banach k-algebras and of their reductions. In
§3.2, we study the relation of the semisimplicity of Banach modules and of their reduc-
tions regarded as modules over the reduction of the operator algebras associated to them.
In §3.3, we give an algorithm for determining whether a given finite dimensional unitary
Banach k-linear representation is presentable as the orthogonal direct sum of absolutely
irreducible subrepresentations.

1 Preliminaries

We recall semisimple modules and p-adic unitary Banach representations. For this pur-
pose, we prepare the conventions. Let Set denote the category of sets and maps, and Ring
the category of rings and ring homomorphisms. Here we assume that a ring is unital and
associative, but is not necessarily commutative. For an ' € ob(Ring), we denote by F°P
the opposite ring of F, by Idem(F) C F the subset of idempotents, and by Z(F) C F the
commutative subring of central elements.
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1.1 Simplicity and Semisimplicity

We introduce several variants of the simplicity and the semisimplicity of rings and left
modules. Let F' € ob(Ring). We denote by Vect(F') the category of left F-modules and
F-linear homomorphisms. We abbreviate Homyecyr) (resp. Endyeeyr)) to Homp (resp.
Endr). We regard a right F-module V" as a left /°°-module in a natural way.

Let V' € ob(Vect(F)). We say that V' is simple if V' admits exactly two left F-
submodules, is isotypic if V' is isomorphic in Vect(F) to the direct sum of copies of a
simple left F-module, is semisimple of finite type if V is isomorphic in Vect(F) to the
direct sum of a finite family of isotypic left F-modules, and is semisimple of finite type
(resp. semisimple) if V' is isomorphic in Vect(F) to the direct sum of a finite family (resp.
family) of simple left F-modules. We say that F is simple if F' admits exactly two two-
sided ideals, and is semisimple if F is a semisimple left F-module.

We put /7, := Endp(V)° € ob(Ring) and F/ := Endgug, (V) € ob(Ring). The scalar
multiplication F'x V' — V induces an injective ring homomorphism Wy, r: F/Anng(V) —
Fy. By Fy c (FY)} = Endgna, oy, (V) and Endr(V) € Endr(V)y, we have F) = (F7)7.
The weak topology on F7] is the topology generated by the set {{f” € F7) | (f' — f)v =
0} | (fiv) € Fy x V). Since {f € F}/ | (fV)ies = (0),es} forms an open neighbourhood
of 0 € F}} with respect to the weak topology for any finite subset S C V, we obtain the
following:

Proposition 1.1. If V' is finitely generated as a right Fj-module, then the weak topology
on F'}] coincides with the discrete topology.

By Proposition 1.1 and Jacobson—Bourbaki density theorem (cf. [Cri04] D 2.2), we
obtain the following:

Corollary 1.2. If V is a semisimple left F-module finitely generated as a right F';,-module,
then Yy r is an isomorphism in Ring.

Suppose that F' is commutative. We denote by Alg(F’) the category of F-algebras and
F-algebra homomorphisms. Let 4 € ob(Alg(F)) and V' € ob(Vect(4)). We say that 4
(resp. V) is finite dimensional if A (resp. V) is finitely generated as an F-module. We
recall the structure of a finite dimensional simple left A-module.

Proposition 1.3. Suppose that F is a field and V is finite dimensional. Then the following
are equivalent.

(i) The left A-module V is simple.

(ii) There is a surjective F-algebra homomorphism n: A - M, (4,) with n € N \ {0}
such that V' is isomorphic in Vect(4) to A/ ker(m)®wm, ;) (4),)", and A}, is a non-zero
division F-algebra.
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Proof. The implication from (ii) to (i) is obvious. We show the implication from (i) to (ii).
Suppose that V' is simple. Put D := 4’,. Since D is an F-algebra, V' is finitely generated
as a right D-module, and hence we have an isomorphism ¥y, : A/Ann,(V) — A4} in
Alg(F) by Corollary 1.2. By Schur’s lemma (cf. [Beh72] II 1 Theorem 2), D is a division
F-algebra with 0 < d := dimz D < (dimy V)? < oo, and a right D-linear basis of V' gives
an isomorphism 47, — M,,(D) with n := dimp V' € N\ {0} in Alg(F’). The fixed D-linear
basis of /' gives an isomorphism 4/Ann,(V) &,y D" — V in Vect(4). m|

We recall the relation between the isotypic property of V' and the simplicity of the
operator algebra Wy, 4(4/Anny(V)) c Endz(V) identified with 4/Ann4(V) through Wy, ,.

Proposition 1.4. Suppose that F is a field. Then V is an isotypic left A-module admit-
ting a finite dimensional simple lefi A-submodule if and only if A/Anny(V) is a finite
dimensional simple F-algebra.

Proof. First, suppose that V' is an isotypic left 4-module admitting a finite dimensional
simple left A-submodule L c V. Since V is isomorphic in Vect(4) to the direct sum of
non-empty copies of L, we have Ann,(}/) = Ann,(L). By Proposition 1.3, 4} is a non-
zero finite dimensional division F-algebra and 4/Anny(V) = A/Anny(L) is isomorphic
in Alg(F) to M,,(4;) with n € N'\ {0}. Therefore 4/Ann,(V) is a simple F-algebra with
dimp A/Anny(V) = n? dimp A} < oo,

Next, suppose that 4/Anny (V) is a finite dimensional simple F-algebra. By Wed-
derburn’s theorem (cf. [AF92] 13.4 Theorem), there is a pair of a non-zero finite di-
mensional division k-algebra D and an isomorphism M, (D) — A/Anny(V) with n €
N\ {0} in Alg(F), and every simple left A/Ann,(V)-module is isomorphic to L =
A/Ann,(V) ®w,mp) D". Since A/Anny(V) is a simple Artinian ring, it is a semisimple
ring by [AF92] 13.5 Proposition. Therefore V' is isomorphic in Vect(4) to the direct sum
of non-empty copies of L. By dimz 4/Anny(V) # 0, we have V' # {0}. Therefore V' is an
isotypic left 4-module admitting a left A-submodule isomorphic to L in Vect(A4). O

A left A-submodule of V' is said to be an isotypic component if it is a maximal isotypic
left A-submodule. Every semisimple left A-module admits a unique direct sum decompo-
sition into isotypic components. We recall the relation between the decomposition of V'
into the isotypic components and the decomposition of the operator algebra into blocks.

Proposition 1.5. Suppose that V is semisimple of finite type and the direct sum decom-
position V = 69:,:1 Vi with n € N into isotypic components satisfies that A/ Anny(V;)
is finitely generated as an F-module for any i € N N [1,n]. Then the direct product
A — [1L, A/ Anny(V;) of canonical projections induces an isomorphism A]/Anny(V) —
[T, 4/ Anny(V;) in Alg(F),

Proof. 1f V' = {0}, then the assertion holds. Assume /' # {0}. Then every isotypic
component of ¥ is non-zero. Let i € N N [1, n]. Take a simple left A-module L; such that
V; is isomorphic in Vect(4) to the direct product of copies of L;. By V; # {0}, we have
Anny(V;) = Anny(L;). Since L; is cyclic as a left 4/Ann,(L;)-module and A/Ann,(L;) =
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A/Anny(V;) is finite dimensional, L; is finite dimensional. Since A, is an F-algebra,
L; is finitely generated as a right 47 -module. Therefore ¥y, 4: 4/Ann,(V;) — A7 is an
isomorphism in Alg(F) by Corollary 1.2. Put L := EB7=1 L;. Then L admits an injective 4-
linear homomorphism into ¥, and } admits an injective A-linear homomorphism into the
direct sum of non-empty copies of L. It implies Ann,(L) = Ann,(V). Since L; and L; are
simple left A-modules with distinct isomorphisms classes, we have Hom,(L;, L;) = {0}
for any (i, /) € (N N [1,n])* with i # j. Therefore the embedding (D), 4] — 4
given as the direct sum of the zero extensions is an isomorphism in Vect(F). It implies
that the map ¢: 47 — []L, 47, given as the direct product of the restriction maps is an
isomorphism in Alg(F). Since L is finitely generated as an F-module and A4/ is an F-
algebra, L is finitely generated as a right 47 -module. Therefore W; 4: A/Anny(L) — A}
is an isomorphism in Alg(F) by Corollary 1.2. The map 4/Ann,(V) — []i.; A/Anny(V;)
in the assertion coincides with the composite of (][]}, \sz" ) oto¥; ,,and hence is an
isomorphism in Alg(F). O

1.2 Absolute Simplicity and Stable Semisimplicity

Let F be a commutative ring, 4 an F-algebra, and V' a left 4-module. We say that V' is
absolutely simple if K®p V is a simple left K ® A-module for any K € ob(Alg(F)) which
is a field, is stably isotypic if V is isomorphic in Vect(4) to the direct sum of copies of
an absolutely simple left 4-module, and is stably semisimple of finite type (resp. stably
semisimple) if V' is isomorphic in Vect(4) to the direct sum of a finite family (resp. a
family) of absolutely simple left 4-modules.

We say that A4 is stably simple if A is simple and isomorphic in Alg(F) to M,,(F) with
n € N\ {0}, and is stably semisimple if A is the direct product of a finite family of stably
simple F-algebras. We note that F admits a stably simple F-algebra if and only if F' is a
field. We recall the structure of an absolutely simple left 4-module.

Proposition 1.6. Suppose that F is a field. Then the following are equivalent:
(i) The left A-module V is finite dimensional and absolutely simple.

(ii) The left K ®r A-module K ®F V is finite dimensional as a K-vector space and is
simple for any finite field extension K/F.

(iii) There is a surjective F-algebra homomorphism . A —» M,(F) with n € N \ {0}
such that V is isomorphic in Vect(4) to A/ ker(r) ®w, ) F".

Proof. The implications from (i) to (ii) and from (iii) to (i) are obvious. We show the
implication from (ii) to (iii). Suppose that the left K ®r 4-module K ®x V is finite
dimensional as a K-vector space and simple for any finite field extension K/F. Then
V = F ®p V is finite dimensional as an F-vector space and simple. Put D := 4/,. By
Proposition 1.3, there is a surjective F-algebra homomorphism 7: 4 - M, (D) with
n € N\ {0} such that V' is isomorphic in Vect(4) to 4/ ker(m)®wm,p) D", and D is a non-zero
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finite dimensional division F-algebra. By the existence of a splitting field (cf. [Jac96]
Theorem 1.6.19), there is a finite field extension K/Z(D) such that K®z(p)D is isomorphic
in Alg(K) to M,(K) with m := (dimgp, D)"/?. The inclusion F < Z(D) induces a
surjective K®pA4-linear homomorphism K®zV = K®z )V, and we have an isomorphism
K &z V = K®zp) (4] ker(mr) ®wm, ) D) = (K 74/ ker(m) A/ ker(m)) @wm, o, k) Mim(K)" =
(K®z(4/ ker(mpA [ ker(m))®wm,,, ) K™)*" in Vect(K®rA). By the assumption, we obtain m =
1. It implies D = Z(D) = K. We obtain an isomorphism K ®¢ V' = K ®y (4/ ker(r) ®wm,x)
K") = (K ®F A/ ker(r)) ®wm,ke,k) (K ®F K)" in Vect(K ®r A). By the assumption, the
kernel N of the multiplication K®7 K — K is zero, because (K ®p A/ ker(n)) ®m, ke, k) N”
is a proper left K ® A-submodule of (K ®p 4/ ker(r)) ®wm,(ks.k) (K ®F K)". It implies that
K is isomorphic in Alg(F) to /. We obtain an isomorphism V' — A/ ker(r) ®w, ) F” in
Vect(A4). O

We show the relation between the stably isotypic property of V' and the strong sim-
plicity of the operator algebra.

Proposition 1.7. Suppose that F is a field. Then V is a stably isotypic left A-module ad-
mitting a finite dimensional absolutely simple lefi A-submodule if and only if A/ Ann (V)
is a stably simple F-algebra.

Proof. First, suppose that V' is a stably isotypic left A-module admitting a finite dimen-
sional absolutely simple left A-submodule L. Since V' is isomorphic in Vect(4) to the
direct sum of non-empty copies of L, we have Anny(V) = Ann,(L). By Proposition 1.6,
there is a surjective F-algebra homomorphism 7: 4 - M,,(F) with n € N \ {0} such that
L is isomorphic in Vect(4) to 4/ ker(r) ®wm, ) F". Therefore 4/Ann, (V) = A/Ann,(L) =
A/ ker(rr) is isomorphic in Alg(F) to M,,(F).

Next, suppose that 4/Anny(V) is a stably simple F-algebra. Take an isomorphism
M,(F) — A/Anny(V) with n € N\ {0} in Alg(F). Then L = A/Anny(V) ®wm,wr) F"
is an absolutely simple 4-module by Proposition 1.6, and every simple left A/Ann,(V)-
module is isomorphic in Vect(4) to L. Since 4/Anny(¥) is a simple Artinian ring, it is
a semisimple ring by [AF92] 13.5 Proposition. Therefore V' is isomorphic in Vect(4) to
the direct sum of copies of L. O

By Proposition 1.4, Proposition 1.5, and Proposition 1.7, we obtain the following:

Corollary 1.8. Suppose that F is a field. If V is semisimple (vesp. stably semisimple)
of finite type and every simple (vesp. absolutely simple) left A-submodule of V is finite
dimensional, then A/ Anny(V) is a finite dimensional semisimple (resp. stably semisimple)
F-algebra.

We say that A4 is discretely spectral (resp. stably discretely spectral) if 4 is isomorphic
in Alg(F) to the direct product of a family of finite dimensional simple (resp. stably
simple) F-algebras. We note that A4 is finite dimensional and semisimple if and only if
A is finite dimensional and discretely spectral by Artin—Wedderburn theorem (cf. [AF92]
13.6 Theorem).
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An e € Idem(Z(A4)) is said to be primitive if e # 0 and €’e € {0, e} for any ¢’ €
Idem(Z(A4)). We denote by n¢(4, F) C Idem(Z(A)) the subset of primitive central idem-
potents. We note that 4 is discretely spectral if and only if e4 = A/(1 — e)4 is a finite
dimensional simple F-algebra for any e € my(4, F) and the direct product I'yr: 4 —
[(A4,F) = [leenyar A/(1 — e)4 of canonical projections is bijective. Therefore ev-
ery discretely spectral F-algebra admits a canonical presentation as the direct product
of finite dimensional simple F-algebras. We say that V' vanishes at infinity if the map

Nyar: V— ]—IEGKO(A’F)eV, V > (€V)eeny(4,F) 1S Injective.

The strong topology on A is the topology on A generated by the set {f + (1 — e)4 |
(f,e) € A X no(4, F)}, which is Hausdorff if and only if ker(I'y ) = {0}. In particular,
every discretely spectral F-algebra is Hausdorft with respect to the strong topology. For
an (f))ic; € A" with I € ob(Set), if the net (3,cs fi)scrss<e indexed by the set of finite
subsets of / ordered by inclusions converges to an f € A4 with respect to the strong
topology, then we say that Y5, f; converges to f, and if such an f is unique, then we
write Y%, f; = f. We note that ZZ‘GHO( 4.5 Je always converges to f for any f € 4, and
hence 7¢(4, F) plays a role of an approximate unit.

Proposition 1.9. The F-algebra A is discretely spectral (rvesp. stably discretely spectral)
if and only if A/(1 — e)A is a finite dimensional simple (vesp. stably simple) F-algebra for
any e € (A, F), and Y5, 4. foe uniquely converges for any (fo)eerya.r) € AP,

Proof. The inverse implication follows from the fact that every discretely spectral F-
algebra is Hausdorff with respect to the strong topology. Suppose that 4/(1 —e)4 is a
finite dimensional simple (resp. stably simple) F-algebra for any e € mo(4, F), and the
sum Y5c. 4 fee uniquely converges for any (f)eenyar) € A™*F. Since Yoeq,ar) fe
converges to f for any f € 4, the uniqueness of the convergence ensures the injectivity
of T . For any (Fo)eeny(a.ry € T(A, F), any lift (fo)eerysry € AU of (Feeemy(a.r) Satis-
fies Ty r(Xeenya,r) fe€) = G@)eeﬂo(A,p). Therefore 'y i is surjective. Thus A is discretely
spectral (resp. stably discretely spectral). O

Let G be a topological monoid. A smooth F-linear representation of G is a pair
(V,p) of a V' € ob(Vect(F)) and a map p: G X V' — V such that the map p(g,—): V —
Vv p(g,v)is an F-linear homomorphism for any g € G, the induced map BS(p): G —
Endg(V) is a monoid homomorphism with respect to the monoid structure on Endz(V)
given by the composition, and {g € G | p(g,v) = V'} is open in G for any (v,V') € V2. An
F[G]-linear homomorphism between smooth F-linear representations of G is an F-linear
G-equivariant homomorphism. We denote by Sm(F, G) the category of smooth F-linear
representations of G and F[G]-linear homomorphisms.

Let (¥, p) € ob(Sm(F, G)). We say that (V,p) is finite dimensional if V is finite di-
mensional, is irreducible if V admits exactly two G-stable left F-submodules, is abso-
lutely irreducible if K ® V is an irreducible smooth K-linear representation of G for any
K € ob(Alg(F)) which is a field, is isotypic (resp. stably isotypic) if V is isomorphic
in Sm(F, G) to the direct sum of copies of an irreducible (resp. absolutely irreducible)
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smooth F-linear representation of G, is semisimple (resp. stably semisimple) of finite type
if V is isomorphic in Sm(F, G) to the direct sum of a finite family of isotypic (resp. stably
isotypic) smooth F-linear representations of G, is semisimple (resp. stably semisimple) if
V' is isomorphic in Sm(F, G) to the direct sum of a family of irreducible (resp. absolutely
irreducible) smooth F-linear representations of G.

Remark 1.10. Let G denote the underlying monoid of G. Then the inclusion Gy —
k[Go] induces a fully faithful functor ¢5}F: Sm(G, F) — Vect(F[Gy]) preserving the
underlying F'-modules, which admits a strict inverse ¢g r: Vect(F[Go]) = Sm(G, F) if G
is a discrete monoid. The smooth F-linear representation (7, p) of G is finite dimensional
(resp. irreducible, isotypic, semisimple of finite type, semisimple, absolutely irreducible,
stably isotypic, stably semisimple of finite type, stably semisimple) if and only if¢5fF(V)
is a finite dimensional (resp. simple, isotypic, semisimple of finite type, semisimple,
absolutely simple, stably isotypic, stably semisimple of finite type, stably semisimple)
left F[G(]-module.

1.3 Banach Representations of Topological Monoids

Let & be a complete valuation field. We recall Banach k-vector spaces and Banach k-
linear representations of topological monoids. For a k-vector space V, a complete non-
Archimedean norm on V is amap || — ||: V' — [0,0) is an ultrametric function (cf.
[BGR84] 1.1.1 Definition 1) on the underlying Abelian group of V" with |cv|| = |c| ||v|| for
any (¢, v) € kx V such that the induced ultrametric (cf. [BGR84] 1.1.3 p/ 12) is complete.
A Banach k-vector space is a pair (V|| — ||) of a k-vector space V' and a complete non-
Archimedean norm || — || on V. We abbreviate a Banach k-vector space (V|| —||) to V'
as long as there is no ambiguity of the norm, and equip ¥ with the norm topology so
that ' forms a topological k-vector space. For example, k itself is a Banach k-vector
space. For Banach k-vector spaces V| and V5, a k-linear homomorphism F': V| — V, is
said to be bounded if there is a C > 0 with ||Fv|| < C|jv|| for any v € V;. We denote by
Vect®™ (k) the category of Banach k-vector spaces and bounded k-linear homomorphisms.
We abbreviate Homy,,su, (resp. Endy,gpo gy, Homy,pmg (=, 4)) to Hom®™ (resp. 24,
(=)®), and equip it with the operator norm (cf. [BGR84] 2.1.6 Definition 2) so that it
forms a Banach k-vector space.

For a (V, V») € ob(Vect®(k))?, an F € Hom®"(V;, V>) is said to be submetric (resp.
isometric) if the inequality [|Fv]| < ||| (resp. the equality ||[Fv|| = |[v||) holds for any
v € V). We denote by Vect®"(k) c Vect®(k) the subcategory of submetric k-linear

homomorphisms. We abbreviate Homy,esin gy (resp. Endyeesmiy) to Home, (resp. By).

Ban(1) is an isomorphism in Vectg?“(k) if and only if

We note that a morphism in Vect

it is an isometric bijective map. Let ¥ € ob(Vect2{"(k)). We put V(1) == {v € V |
vl < 1}, V(1-) == {v € V(1) | |M| < 1}, and by V = vQ)/V(1-). In particular,
k(1) is the valuation ring of k, k(—1) is the maximal ideal of (1), and & is the residue
field of k(1). The correspondence ¥ ~> V(1) (resp. ¥ ~» V) gives a faithful functor

(=)(1): Vectz‘]’“(k) — Vect(k(1)) (resp. a functor red: Vect®(k) — Vect(k)). For any

<l
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closed k-vector subspace W C V, the map W — V induced 1 by the inclusion W — V'is
injective, and hence we regard W as a k-vector subspace of V.

Let / € ob(Set). We denote by 12" the direct product (cf. the bounded direct product

i€l

b(H,eI) in [BGR84] 2.1.5 Definition 2) of a family in Vect2{"(k) indexed by /, and by
@. the direct sum (cf. the restricted direct product c([[;¢;) in [BGR84] 2.1,5 Definition
3) in Vect?]"(k) of a family in Vect2;"(k) indexed by 1. We put Co(/, k) = @ie k. We
recall basic properties of Cy(/, k).

Proposition 1.11. The following hold:

(i) The map k' — Co(I, k) induced by the inclusion k(1)*" — Co(1,k)(1) is an iso-
morphism in Vect(k).

(i) The map B(Co(1,k)) — T2 Co(l, k) induced by the natural embedding I —>
Co(1, k)(1) is an isomorphism in VectBa“(k)

(iii) The map End;(%“” ) = [l k%" induced by the natural embedding I — k® is an
isomorphism in Vect(k).

(iv) The map B(Co(1,k)) — Endi(Co(/,k)) induced by the reduction Co(I,k)(1) -
Co(1, k) is an isomorphism in Alg(k).

(v) The evaluation map Co(I, k) — Co(I, k)°P is isometric.

Proof. The assertion (i) follows from the fact that {i € / | |f(i)| = 1} is a finite set for any
f € Co(, k)(1). The assertion (ii) follows from the universality of the direct product and
the direct sum. The assertion (iii) follows from the assertion (ii) for the case where the
valuation of £ is trivial. The assertion (iv) follows from the assertions (i), (ii), and (iii)
because the direct product commutes with the reduction. The assertion (v) follows from
the fact that every i € I corresponds to the evaluation map Co(/, k) — k, f +— f(i). O

We say that V' is finite dimensional if dim; V' < oo, is unramified if ||V|| c [0, o) is
contained in the closure of ||, and is orthonormalisable if V is isomorphic in VectBa“(k) to
Co(I, k) for some I € ob(Set). We denote by Vect>(k) c Vect?"(k) the full subcategory
of unramified Banach k-vector spaces. The functor (=)(1): VectBa“(k) — Vect(k(1)) in-
duces a fully faithful functor Vectfjl‘:(k) — Vect(k(1)). We recall basic relations between
norms, topologies, endomorphisms, and reductions.

Proposition 1.12. Let W C V be a k-vector subspace. Then the following hold:
(i) If W is finite dimensional, then W is closed.

(ii) If the valuation of k is discrete and W is finite dimensional, then the canonical
projection V — V/W induces an isomorphism VW — V/W in Vect(k).

(iii) If'V is unramified and W is closed, then W and V| W are unramified.
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(iv) If the valuation of k is discrete, V is unramified, and W is closed, then the canonical
projection V — V/W induces an isomorphism V|W — V/W in Vect(k).

Proposition 1.13. The following hold:
(i) If'V is orthonormalisable, then V is unramified.

(ii) If the valuation of k is discrete and V is unramified, then V is orthonormalisable,
V1| C |kl, and V(1=) = k(1-)V(1).

(iii) For a (Vy)ier € ob(Vect®"(k)) with I € ob(Set), [15 V; is unramified if and only if
Vi is unramified for any i € 1, in which case it satisfies the universality of the direct
product in Vect>(k).

(iv) For a (Vy)ier € ob(Vects{"(k))! with I € ob(Set), @ie Vi is unramified if and only if
Vi is unramified for any i € 1, in which case it satisfies the universality of the direct
sum in Vect> (k).

() If V is orthonormalisable and V  is finite dimensional, then V' is finite dimensional
and the equality dimy V' = dimg V holds.

(vi) If V is finite dimensional, then every k-linear homomorphism V.— W toa W €
ob(Vect®™(k)) is bounded.

Proof of Proposition 1.12. The assertion (i) follows from [BGR84] 2.3.3 Proposition 4.
The assertion (ii) follows from [BGR84] 2.4.3 Corollary 11. The assertion (iii) follows
from the definition of the unramified property. The assertion (iv) follows from [BGR84]
1.1.5 Proposition 4. O

Proof of Proposition 1.13. The assertion (i) follows from the definition of the norm on
the direct sum. The assertion (ii) follows from [Mon70] IV 3 Corollaire 1 (cf. [BGR84]
2.5.2 Lemma 2 or the proof of [Sch02] Proposition 10.1) and the equality ||cv|| = |c| |[VI|
for any (c,v) € kx V. The assertion (iii) follows from the definition of the unramified
property. The assertion (iv) follows from the assertion (iii) and Proposition 1.12 (iii). The
assertion (v) follows from Proposition 1.11 (i). The assertion (vi) follows from [BGR84]
2.3.3 Corollary 5. O

A subset § C V is said to be bounded if there is a C > 0 with |[v|| < C for any
v € S. We have a canonical way to construct an unramified Banach k-vector space from
a Banach k-vector space reflecting the boundedness of a multiplicative submonoid of

BV).

Proposition 1.14. Suppose that k is a spherically complete field with |k| # {0,1}. Let
=1 € ob(Vectg‘f“(k)) and S ¢ BW,|| - ). If1 €S, FF' €S forany (F,F’) € §°,
and suppg ||F|| < oo, then there is a complete non-Archimedean norm || — || on W with
(W,|| = |I') € ob(Vect®(k)) and ||[Fw| < |wl for any F € S such that the identity

unit

W1 =) = W\ = ') is an isomorphism in Vect®™ (k).
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Proof. Letw € W. For any (F,v) € S x (W, || = |)P(1), we have v(Fw)| < VIl [|F|| W] <
(suppes IFIDIVL - Put [l = supgsyyesumoqy IMEWI < (suppes IFI) Iwll. By Ikl #
{0, 1}, there is a ¢ € k* with 0 < |c| < 1. We have || |[w]| < sup(lk] N [0,[w]]]) <
sup,epn(y V(W)llIwll by Hahn—Banach theorem (cf. [Ing52] Theorem 3 or [Sch02] Corol-
lary 9.3), and SUP,e o1y vw)llw|l < Wl by 1 € S. It implies that (W, ||—||") is a Banach -
vector space such that the identity (W, ||—||) — (W,||—||") is an isomorphism in Vect®™(k).
By definition, (W, || —|’) is unramified. Let (F, w) € S x W. For any (F’,v) € S x W", we
have [V(F'(Fw))| = W(F'F)w)| < [|w|". It implies [|[Fw||" < [[w]|’. O

Applying Proposition 1.14 to the case S = A(V)(1), we obtain the following:

Corollary 1.15. Suppose that k is a spherically complete field with |k| # {0,1}. Let
VARG ob(VectzT"(k)). Then there is a complete non-Archimedean norm || — || on W
with (W, || = |I') € ob(Vect2(k)) and ||[Fwl" < |[wll' for any F € B(V)(1) such that the

identity (W, || — ) = (W, || - |') is submetric and is an isomorphism in Vect®(k).

Proof. By Proposition 1.14, W admits a complete non-Archimedean norm || — || on W
with (W, ]| = ||") € ob(VectE;’i‘:(k)) and ||[Fw| < |w| for any F € B(V)(1) such that the
identity (W, || = |I) — (W]l = |I') is an isomorphism in Vect®(k). By |k| # {0, 1}, there
is a ¢ € k* such that the map (W, || =) = (W,|| = |I'), w + cw is submetric. By the
construction, the map || — ||”: W — [0,0), w - |lcw||’ is a complete non-Archimedean
norm with (W, || —||") € ob(VectE‘lfi’:(k)) and ||[Fw||” < |[wl|” for any F € A(V)(1) such that

the identity (W, || —|[) — (W, || —|”") is submetric and is an isomorphism in Vect®™(k). O

Let G be a topological monoid. A Banach k-linear representation of G is a pair
(V,p) of a V' € ob(Vect®™(k)) and a continuous map p: G X ¥ — V such that the map
p(g,—): V — V,v p(g,v) is k-linear for any g € G and the induced map BS(p): G —
(V) is a monoid homomorphism with respect to the monoid structure on Z(V) given by
the composition. A k[G]-linear homomorphism between Banach k-linear representations
of G is a k-linear G-equivariant homomorphism. We denote by Vect®(G, k) the category
of Banach k-linear representations of G and bounded k[G]-linear homomorphisms.

Let (V,p) € ob(Vect® (G, k)). We say that (V, p) is finite dimensional if V is finite
dimensional, is submetric if BS(p) factors through %.(V) c A(V), and is unitary if
(¥, p) is submetric and ¥ is unramified. We denote by VectE?“(G, k) c Vect®™ (G, k) the
subcategory of submetric Banach k-linear representations of G and submetric k[G]-linear
homomorphisms, and by Vectt(G, k) ¢ Vect®(G, k) the full subcategory of unitary Ba-
nach k-linear representations of G. For a (V;, 0;)ies € ob(Vectz?“(G, k))! with I € ob(Set),
the pair [12" p: T12(V;, pi) of [1E% V; and the entry-wise action GX [ V; — [152 v,
of G forms a submetric Banach £-linear representation of G satisfying the universality of
the direct product in Vect®®(k), and the closed G-stable k-vector subspace D,V c

<1
[13%(V;, p;) forms a submetric Banach k-linear representation of G with respect to the

i€l
restriction of H?:,“ p satisfying the universality of the direct sum in Vectlz*l‘“(k). For any

(Vispi)ier € Ob(Vectint(G, k) with 1 € ob(Set), [T (Vi) (resp. €D, (Vi 1)) forms a

unit
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unitary Banach k-linear representation of G satisfying the universality of the direct prod-
uct (resp. the direct sum) in Vect®®(G, k) by Proposition 1.13 (iii) and (iv).

unit

We say that (V, p) is irreducible if (V, p) admits exactly two closed G-stable k-vector
subspaces, and is absolutely irreducible if K&V (cf. [BGR84] 2.1.7 p. 71) is an irre-
ducible unitary Banach K-linear representation of G with respect to a unique continuous
K-linear extension G X (K& V) — K&V (cf. [BGR84] 2.1.7 Proposition 5) of p for any
extension K/k of complete valuation fields. By Corollary 1.15, we have the following:

Proposition 1.16. If that the valuation of k is discrete and (V, p) is a submetric Banach
k-linear representation of G, then (V, p) admits a submetric isomorphism in Vect®(G, k)
to a unitary Banach k-linear representation of G.

Henceforth, suppose that (¥, p) is submetric. We say that (¥, p) is isotypic (resp.
stably isotypic) if V admits a submetric injective k[G]-linear homomorphism into the
direct product of copies of an irreducible (resp. absolutely irreducible) submetric Banach
k-linear representation of G, is semisimple (resp. stably semisimple) of finite orthogonal
type if V is isomorphic in Vect"™ (G, k) to the direct sum of a finite family of isotypic
(resp. stably isotypic) submetric Banach k-linear representations of G, and is semisimple
(resp. stably semisimple) if V' admits a submetric injective k[{G]-linear homomorphism
into the direct product of a family of irreducible (resp. absolutely irreducible) submetric
Banach k-linear representations of G. We denote by (¥, p) the pair of ¥ and the map
p: GxV — V induced by p. Then (¥, p) forms a smooth k-linear representation of G.
The correspondence (¥, p) ~» (¥, p) gives a functor red: Vectz?“(G, k) — Sm(G, k). We
note that red does not necessarily preserve the variants of the semisimplicity.

Remark 1.17. Let F be a field. We equip F with the trivial valuation so that F' forms a
complete valuation field. Then the forgetful functor Vect>(F) — Vect(F) is an equiv-

alence of categories, and induces a categorical equivalence Vectffi‘t‘(G, F) - Sm(G, F).

The reduction F = F(1) - F is an isomorphism in Ring, and red: Veth?"(G, F) —
Sm(G, F) is faithful.

Suppose that (¥, p) is unitary. When the valuation of & is discrete, then the term
“submetric” in the definition of the variants of the semisimplicity in the last paragraph
can be replaced by “unitary” by Proposition 1.13 (iii) and (iv) and Proposition 1.16. We
say that (¥, p) is orthogonally stably isotypic if V is isomorphic in Vect?®(G, k) to the
direct sum of copies of an absolutely irreducible unitary Banach k-linear representation
of G, and is orthogonally stably semisimple if V is isomorphic in Vect?®(G, k) to the
direct sum of absolutely simple unitary Banach k-linear representations of G.

2 Banach Modules and Operator Algebras

Let k£ be a complete valuation field. The aim of this section is to introduce several vari-
ants of the semisimplicity of Banach k-algebras and Banach modules over them, and
study relations between the semisimplicity of Banach modules and of operator algebras
associated to them.
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2.1 Banach Modules of Banach Algebras

A Banach k-algebra is a pair (4, || —||) of a k-algebra 4 and a complete non-Archimedean
norm || — || on the underlying k-vector space of 4 with ||1|| € {0, 1} such that the multipli-
cation 4 X 4 — A extends to a unique bounded k-linear homomorphism A& 4 — A. We
abbreviate a Banach k-algebra (4, || —||) to 4 as long as there is no ambiguity of || — ||, and
equip 4 with the norm topology so that 4 forms a topological k-algebra. We denote by
AlgP™ (k) the category of Banach k-algebras and bounded k-algebra homomorphisms.

Let (4, ||-|) € ob(AlgP™(k)). We say that (4, ||| is finite dimensional if dim; 4 < oo,
is submetric if ||f ']l < fIl Ilf]l for any (f, f') € A2, is unitary if (4,]| - ||) is sub-
metric and the underlying Banach k-vector space of A is unramified. For example, k&
itself is a finite dimensional unitary Banach k-algebra. One of the simplest example
of a Banach k-algebra is a closed k-subalgebra of the full operator algebra Z(V) with
V € ob(Vect®™(k)). By Proposition 1.11 (iv) and Proposition 1.13 (i) and (ii), we obtain
the following:

Proposition 2.1. Let V € ob(Vect®(k)). Then every closed k-subalgebra of B(V) is
submetric. If the valuation of k is discrete and V is unramified, then every closed k-
subalgebra B ¢ B(V) is unramified and satisfies Anng(V) = {0}.

By the same calculation as the proof of [BGR84] 1.2.4 Proposition 4 and 1.2.4 Corol-
lary 5 for the commutative case, we obtain the following:

Proposition 2.2. For any closed k(1)-subalgebra B C A, 1 + (BN A(1-)) is contained in
B, and if A is submetric, then 1 + (B N A(1-)) forms an open subgroup of (B N A(1))*.

We denote by Alg2"(k) c Alg®™ (k) the subcategory of submetric Banach k-algebras
and submetric k-algebra homomorphisms, and by Alg> (k) c Algg‘l’“(k) the full subcat-
egory of unitary Banach k-algebras. The functor red: Vectz?“(k) — Vect(k) induces a
functor Alg®"(k) — Alg(k). We put (4, ]| — [)® = (4, || - ||) € ob(Alg®™"(k)). The
correspondence (4, || — |[) ~ (4, — ) gives a functor (=) : Alg®™(k) — AlgB™ (k).
For any (4;)ie; € ob(AlgE"(k)) (resp. (4;)ies € ob(AlgE®(k))") with I € ob(Set), [1)" 4
forms a submetric (resp. unitary) Banach k-algebra satisfying the universality of the di-
rect product in Alg>{"(k) (resp. Alg.o (k) by Proposition 1.13 (iii)).

unit

Let A € ob(Alg®™(k)). A Banach left A-module is a pair (V, || — ||) of a left 4-module
V' and a complete non-Archimedean norm || — || on the underlying k-vector space of V'
such that the scalar multiplication 4 X ¥ — V extends to a unique bounded k-linear
homomorphism A®;V — V. We abbreviate a Banach left 4-module (V]| —||) to V
as long as there is no ambiguity of the norm, and equip V' with the norm topology so
that V' forms a topological left A-module. A Banach right A-module is a Banach left 4°P-
module. We denote by Vect®™(4) the category of Banach left 4-modules and bounded A-
linear homomorphisms. We abbreviate Homy, s ) (resp. Endy,.psey)) to Hom§™ (resp.
End$™), and equip it with the restriction of the operator norm so that it forms a Banach
k-vector space. One of the simplest example of a Banach left A-module is a closed left
ideal of 4. Let V € ob(Vect®?®(4)).
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Proposition 2.3. The two-sided ideal Anny(V) C A and the left ideal Anny(v) C A are
closed for any v e V.

Proof. For any v € V, Anny(v) coincides with the kernel of the map 4 — V, f — fv,
which is closed because the scalar multiplication 4 X ¥ — V is continuous and V' is
Hausdorff. We have Anny(V) = (), Anny(v), and hence Ann, (V) is closed. O

We say that V is finite dimensional if dim; V < oo, is submetric if the map Il 4: 4 —
ZB(V) induced by the scalar multiplication 4 X V' — V is submetric, and is said to be uni-
tary if V is submetric and the underlying Banach k-vector space of V' is unramified. We
denote by Vect2i"(4) c Vect®™(4) the subcategory of submetric Banach left A-modules
and submetric 4-linear homomorphisms, and by Vect®(4) c VectE?“(A) the full subcat-
egory of unitary Banach left 4-modules. The functor red: Vectg‘]‘"(k) — Vect(k) induces

Ban

a functor Vect{"(4) — Vect(4), V ~» V. One of the simplest example of a submetric
Banach left module is the natural representation of an operator algebra.

Proposition 2.4. Let W € ob(Vect®(k)). For any closed k-subalgebra B ¢ B(W), W
forms a submetric Banach left B-module with Anng(W){0}.

We say that V is simple if V' admits exactly two closed left 4-submodules, and is
absolutely simple if K&,V is a simple Banach left K&, 4-module for any extension K/k
of complete valuation fields. By Corollary 1.15, we have the following:

Proposition 2.5. If that the valuation of k is discrete and V is a submetric Banach left
A-module, then V admits a submetric isomorphism in Vect®®(4) to a unitary Banach left
A-module.

We say that 4 is simple if A admits exactly two closed two-sided ideal, is stably
simple (resp. orthogonally stably simple) if 4 is isomorphic in Alg>(k) (resp. Alg2:"(k))
to M,,(k) with n € N\ {0}. We note that every non-zero ring admits a maximal left ideal
and a maximal two-sided ideal by a standard argument with Zorn’s lemma. Therefore the
following ensures the existence of a simple Banach left 4-module:

Proposition 2.6. Every maximal left (resp. two-sided) ideal 9 C A is closed, and A/p
forms a simple Banach left A-module (resp. a simple Banach k-algebra).

Proof. The first assertion immediately follows from Proposition 2.2 for B = A(1), and
the second assertion follows from the fact that the underlying left 4-module (resp. the
underlying k-algebra) of 4/gp is simple. O

Henceforth, suppose that 4 is submetric. For an / € ob(Set), we denote also by H?;}“

the direct product (cf. the bounded direct product /b\(Hie[) in [BGR84] 2.1.5 Definition
2) of a family in Vectz‘f“(A) indexed by /, and by @ie , the direct sum (cf. the restricted
direct product ¢([];c;) in [BGR84] 2.1,5 Definition 3) of a family in Vect®;"(4) indexed
by /. The forgetful functor VectEj‘“(A) — Vectg’i‘“(k) strictly commutes with the direct
product and the direct sum. Therefore for a (V;);e; € ob(VectE’i‘“(A))’ with / € ob(Set),

465



466

T. Mihara

12 V; (resp. é\}ie , Vi) is unitary if and only if V; is unramified for any i € /, in which
case it satisfies the universality of the direct product (resp. the direct sum) in Vect®™(4)

unit
by Proposition 1.13 (iii) (resp. (iv)).

Suppose that V' is submetric. We say that V' is isotypic (resp. stably isotypic) if V
admits a submetric injective A-linear homomorphism into the direct product of copies of a
simple (resp. an absolutely simple) submetric Banach left A-module, is semisimple (resp.
stably semisimple) of finite orthogonal type if V is isomorphic in Vectg‘l‘“(A) to the direct
sum of a finite family of isotypic (resp. stably isotypic) submetric Banach left 4-modules,
and is semisimple (resp. stably semisimple) if V admits a submetric injective 4-linear
homomorphism into the direct product of a family of simple (resp. absolutely simple)
submetric Banach left 4-modules. For example, V is finite dimensional and simple (resp.
semisimple) if and only if the underlying left 4-module of V is finite dimensional and
simple (resp. semisimple) by Proposition 1.12 (i). We study a structure of an isotypic
submetric Banach left 4-module.

Proposition 2.7. Suppose that k| # {0,1} and V is an isotypic submetric Banach left
A-module admitting a finite dimensional simple Banach left A-submodule L. Then the
following hold:

(i) Every simple Banach left A-submodule of V is isomorphic in Vect®™(4) to L.

(i) The evaluation map V — LHomS" D) -y, (*(V))rettomsem (1) induces a submet-

Ban L

ric injective A-linear homomorphism fjy 4: V — HneHomf;’"'(V, oL

(iii) If'V is stably isotypic, then L is absolutely simple.

Proof. First, we verify the assertion (ii). We have ||z(v)|| < |V for any (v,7) € V X

Hom%™ (¥, L)(1), and hence the evaluation map induces a submetric 4-linear homomor-

phism 7y 4: V — HE:;onﬁ""‘(V, oy L We show the injectivity of 7y, 4. Take a simple
unitary Banach left A-module Ly and an injective submetric A-linear homomorphism
2 V > L{ with P € ob(Set). By L # {0}, there is a py € P such that the composite
¢: L — Ly of (|, and the p,-th projection Lg — Ly is non-zero. By Proposition 1.12 (i)
and Proposition 1.13 (vi), the simplicity of L and L, ensures that ¢ is an isomorphism in
Vect®™(4). Letv € ¥\ {0}. By v # 0, there is a p € P such that the image of v by the
composite 7: V' — Ly of « and the p-th projection Lg - Ly is non-zero. By |k| # {0, 1},
there is a ¢ € k* such that co™! o is submetric. We obtain (c¢™' om)(v) = co™! (n(v)) # 0.
Therefore 7y, 4 is injective.

Next, we verify the assertion (i). Let L; C V be a simple Banach left 4-submodule.
By L; # {0}, the injectivity of fjy;; 4 ensures that there is a 7 € Hom$™ (¥, L)(1) such that
7|z, 1s non-zero. By Proposition 1.12 (i) and the simplicity of L; and L, 7|, is bijective,
and hence is an isomorphism in Vect®™(4) by Proposition 1.13 (vi). Finally, we verify
the assertion (iii). If V' is stably isotypic, then Ly can be chosen to be absolutely simple.
Since ¢ is an isomorphism, L is also absolutely simple. O
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Suppose that V' is unitary. When the valuation of & is discrete, then the term “sub-
metric” in the definition of the variants of the semisimplicity in the last paragraph can
be replaced by “unitary” by Proposition 1.13 (iii) and (iv) and Proposition 2.5. We say
that V is orthogonally stably isotypic if V is isomorphic in Vect>®(4) to the direct sum of
copies of an absolutely simple unitary Banach left A-module, and is orthogonally stably
semisimple if V is isomorphic in Vect>®(4) to the direct sum of absolutely simple unitary

unit
Banach left 4-modules.

We say that 4 is semisimple (resp. stably semisimple, orthogonally stably semisimple)
if 4 is isomorphic in Algg'j‘“(k) to the direct product of a finite family of simple (resp.
stably simple, orthogonally stably simple) submetric Banach k-algebras, and is discretely
spectral (resp. stably discretely spectral, orthogonally stably discretely spectral) if A is
isomorphic in Algg‘]’“(k) to the direct product of a family of finite dimensional simple
(resp. stably simple, orthogonally stably simple) submetric Banach k-algebras. For any
E € no(A(1), k(1)), (1 — E)A coincides with Ann4(EA), which is a closed two-sided ideal
by Proposition 2.3, and hence the canonical projection 4 » A/(1 — E)A is a morphism in
AlgZ"(k). We denote by i A—T(Ak) = Hgiﬁo(A(l)’k(l))A/(l — E)A the morphism in
Algz‘]’“(k) given as the direct product of canonical projections. The submetric Banach k-
algebra 4 is discretely spectral if and only if T4 is an isomorphism in Algzzf“(k). When V
is submetric, then we put I'(V, 4, k) = ]—[gglm( ayxay EV. The decomposition of 4 yields
a decomposition of a Banach left 4-submodules in the following sense:

Proposition 2.8. The following hold:
(i) Forany E € mo(A(1),k(1)), EV C V is a closed left A-submodule.

(ii) If V is submetric, then the map V — ]—]EE”Q(A(I)J((]))EV,AV = (EV)Eerg(a(i(y) in-
duces a submetric A-linear homomorphism Uy 451 V — T'(V, 4, k).

Proof. Forany E € no(A(1), k(1)), EV coincides with the kernel of themap V' — V, vi—
(1 — E)v, which is closed by the continuity of the scalar multiplication 4 X V' — V and
the Hausdorff property of V, and the map V' — EV, v — Ev is submetric because V is
submetric. We obtain a submetric 4-linear homomorphism ¥ — []3 iy EV by the
universality of the direct product in VectET“(A). O

Suppose that 7 is submetric. We say that V vanishes at infinity if 'y, is injective.

We note that V" does not necessarily vanish at infinity even if 4 is discretely spectral. For
Ban

example, [1227 k is a discretely spectral unitary Banach k-algebra and ([123 k)/ (EBi k)
is a unitary Banach left [12 k-module which does not vanish at infinity.

2.2 Semisimplicity of Operator Algebras

Henceforth, suppose that the valuation of & is discrete. Let 4 € ob(Alg®(k)) and V €
ob(Vect®™(4)). We denote by C*(4, V) € ob(Alg®*(k)) the closure of ITj4(4) c B(V).
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Then C*(4, V) is submetric by Proposition 2.1, and V is a submetric Banach left C*(4, V)-
module by Proposition 2.4. We study a relation between the semisimplicity of the repre-
sentation module V" and the operator algebra C*(4, V). To begin with, we show a relation
between the isotypic property of /' and the simplicity of C*(4, V) as an analogue of
Proposition 1.4.

Proposition 2.9. Suppose that A and V are submetric. Then V is an isotypic (resp. a sta-
bly isotypic) submetric Banach left A-module admitting a finite dimensional simple (resp.
absolutely simple) Banach left A-submodule if and only if C*(4, V) is a finite dimensional
simple (resp. stably simple) submetric Banach k-algebra.

In order to verify Proposition 2.9, we study the operator algebra of a simple Banach
left A-module.

Lemma 2.10. I V is a finite dimensional simple (resp. absolutely simple) Banach lefi
A-module, then C*(4,V) is a finite dimensional simple (resp. stably simple) submetric
Banach k-algebra. In addition, if V is a finite dimensional absolutely simple unitary
Banach left A-module, then C*(A4, V) is a finite dimensional orthogonally stably simple
Banach k-algebra, and V is isomorphic in Vect(A) to A&w,wk" with n = dimy V for
an isomorphism M,(k) — A in Algb™ (k).

Proof. Put B := C*(4, V). Suppose that V is a finite dimensional simple Banach left
A-module. Put n = dim; V. We have dim; B < n*> < co. By Proposition 1.12 (i), the
underlying left 4-module of V' is simple, and B coincides with I1y,4(4). Therefore by
Proposition 1.4, the underlying k-algebra of B is simple. It implies that B is simple. In
addition, suppose that V' is absolutely simple. By Proposition 1.12 (i), the underlying
left K ®; A-module of K&,V is isomorphic to K ®; V for any finite field extension K/k,
and hence the underlying left 4-module of V' is absolutely simple by Proposition 1.6.
Therefore B coincides with (V) again by Proposition 1.6. Therefore a k-linear basis of
V yields an isomorphism B — M,,(k) in Alg®™(k) by Proposition 1.13 (vi). In addition,
if V is unitary, then the underlying Banach k-vector space of V' is orthonormalisable by
Proposition 1.13 (iii), and an isomorphism Co(NN[1, 7], k) — V in Vect®® (k) induces an

unit

isomorphism B — Z(Co(N N [1,n], k)) = M, (k) in Algz‘l’"(k). O

Lemma 2.11. If' V is an isotypic submetric Banach left A-module admitting a finite
dimensional simple Banach left A-submodule L, then the restriction map Iy 4(4) —»
1, 4(A) induces an isomorphism C*(4, V) — C*(4, L) in Alg®™(k).

Proof. By Proposition 1.12 (i), the underlying left 4-module of L is simple, and C*(4, L)
coincides with I, 4(4). By Proposition 2.7 (i1), fy,r.4: V' = [lrertomsmry1y L 1s a sub-
metric injective A-linear homomorphism. Therefore I1j,, factors through 4/Ann,(L),
and the restriction map Iy, 4(4) - I1; 4(A4) induces an isomorphism C*(4, V) — C*(4, L)
in Alg®™(k) by Proposition 1.12 (i) and Proposition 1.13 (vi). m|

Proof of Proposition 2.9. Put B := C*(4, V). Since V is submetric, B is submetric as
a Banach left 4-module. First, suppose that B is a finite dimensional simple submetric
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Banach k-algebra. By Proposition 1.12 (i), B coincides with I1j4(4) and the underlying
k-algebra of B is simple. By Wedderburn’s theorem (cf. [AF92] 13.4 Theorem), there is
an isomorphism M,,(D) — B with n € N\ {0} in Alg(k) for some division k-algebra D,
and every simple left B-module is isomorphic to L := B®,p) D". Take a ¢ € L\ {0}. By
Proposition 2.6, Anng(¢) is closed and L forms a simple submetric Banach left A-module
with respect to the quotient norm associated to the surjective map B —» L, f +— f& We
show that " admits a submetric injective A-linear homomorphism into the direct product
of copies of L.

We regard VP as a Banach right 4-module in a natural way. Let w € V?. Then
wd = whB is closed by Proposition 1.12 (i). We regard (wA)" as a Banach left 4-module.
Put P, := Hom$™((wA4)®, L)(1). We denote by ¢,: ¥ — (wA)P the composite of the
evaluation map ¥ — VPP and the restriction map VP — (wA)". Put P = L,pn{w} X
P,. Letv € V. We have ||7(t, W) < |l,(v)]| < |Vl for any (w,7) € P, and hence
(m(LeW))wmer € I‘[?vf"},)epL. We denote by ¢: V' — ]‘[Rﬁ;‘r)epL the submetric 4-linear
homomorphism given by setting «(v) = (7(t,,(V)))w.nyep for a v € V. We show that ¢ is
injective. Let v € ¥\ {0}. Since the valuation of & is discrete, there is a w € V2(1) with
w(v) # 0 by Hahn—Banach theorem (cf. [Ing52] Theorem 3 or [Sch02] Corollary 9.3).
It implies ¢,(v) # 0. By dimy(wA4)® < dim; B < oo, the underlying left 4-module of
(wA)® is isomorphic in Vect(4) to the direct sum of non-empty copies of the underlying
left A-module of L. Take a family (L;)", with m € N\ {0} of left 4-submodules of (wA)”
isomorphic in Vect(4) to L with (wA)® = B, L;. By 1,,(v) # 0, there is an iy € NN[1,m]
with ¢,(v) ¢ L;,. By Proposition 1.12 (i), L} := @ie(Nﬂ[l,m])\io L; ¢ (wA)P is closed. Take
an isomorphism ¢: (wA)D/L$ — L in Vect(4). By Proposition 1.13 (vi), replacing ¢ to
@ for a sufficiently large » € N, we may assume that ¢ is submetric. We denote by
n: (wA)® — L the composite of the canonical projection (wA)” —» (wA4)"/L; and ¢. We
obtain (w, 1) € P and n(¢,,(v)) # 0. It implies that ¢ is injective. Therefore V is isotypic. In
addition, suppose that ¥ is stably isotypic. Then D can be chosen to be k by Proposition
1.4 and Proposition 3.1, and L = B ®w,«) k" is absolutely simple. As a consequence, V' is
stably isotypic.

Next, suppose that V' is an isotypic submetric Banach left 4-module admitting a finite
dimensional simple Banach left 4-submodule L < V. By Lemma 2.11, we have an
isomorphism B — C*(4, L). Therefore B is a finite dimensional simple submetric Banach
k-algebra by Lemma 2.10. In addition, suppose that V' is stably isotypic. Then L is
absolutely simple by Proposition 2.7 (iii). Since B is isomorphic in Alg®*(k) to C*(4, L),
B is stably simple by Lemma 2.10. O

Henceforth, suppose that } is submetric. In order to apply Proposition 2.9 to criteria
of the finite orthogonal type property of V, we prepare the following:

Proposition 2.12. Let E € ng(A(1),k(1)). If A is discretely spectral (vesp. stably dis-
cretely spectral), then EV C V is an isotypic (resp. a stably isotypic) submetric Banach
left A-submodule, and if EV # {0}, then EV admits a finite dimensional simple (resp.
absolutely simple) Banach left A-submodule for any E € my(A(1), k(1)).

469



470

T. Mihara

Proof. Suppose that 4 is discretely spectral (resp. stably discretely spectral). By Propo-
sition 2.8 (i), EV is a closed left 4-submodule. Since 4 is discretely spectral, 4/(1 — E)A
is a finite dimensional simple (resp. stably simple) submetric Banach k-algebra. There-
fore Mgy : A/(1 — E)A — C*(4,EV) is the zero map or an isomorphism in Alg®* (k)
by Proposition 1.12 (i). It implies that E'V is zero or an isotypic (resp. a stably isotypic)
submetric Banach left 4-module admitting a finite dimensional simple (resp. absolutely
simple) Banach left 4-submodule by Proposition 2.9. O

We obtain a relation between the semisimplicity of C*(4, V) and the finite orthogonal
type property of V.

Corollary 2.13. If C*(4, V) is a finite dimensional semisimple (resp. an orthogonally
stably semisimple) submetric Banach k-algebra, then V is a semisimple (resp. stably
semisimple) submetric Banach left A-module of finite orthogonal type such that every
simple (resp. absolutely simple) Banach left A-submodule is finite dimensional.

Proof. Put B := C*(4, V). By Proposition 2.12, EV C V is an isotypic (resp. a stably
isotypic) submetric Banach left B-module admitting a finite dimensional simple (resp.
absolutely simple) Banach left B-submodule for any £ € n¢(B(1), k(1)). Since C*(4, V)
is semisimple, we have #mo(B(1),k(1)) < oo and ¥ persyuay £ = 1. Therefore the

finite decomposition B(1) = P Bero(B)A()) EB(1) into two-sided ideals gives a finite

orthogonal decomposition V' = € rersayE Y 3s a Banach left B-module. Let £ €
mo(B(1), k(1)). Take a finite dimensional simple (resp. absolutely simple) Banach left B-
submodule L c EV. By Lemma 2.11, the restriction map Ilgy(4) - II; 4(4) induces
an isomorphism B — C*(4, L) in Alg®* (k). Therefore L is simple as a Banach left 4-
module. Since 7jgy; 5 is A-linear, EV is isotypic (resp. stably isotypic) as a submetric
Banach left 4-module by Proposition 2.7 (ii). Therefore V' is semisimple (resp. stably
semisimple) of finite orthogonal type. Let Ly C V be a simple (resp. an absolutely simple)

left A-submodule. Take a v € L\ {0}. By the presentation V' = @ Eero(B(1), k(l))E V, there is
an E € ny(B(1), k(1)) with Ev # 0. Since EL = EV N L is a closed left 4-submodule of L
with Ev € EL, we obtain L = EL C EV. Therefore L is finite dimensional by Proposition
1.12, Proposition 2.7, and Proposition 2.9. O

We introduce a bigger operator algebra W*(4, V). The weak operator topology on
HB(V) is the topology on B(V) generated by the set {{f € B(V) | w((f" — f)v)| < €} |
(fiv,w,€) € B(V)x V x VP x (0,)}. We denote by W*(4, V) c (V) the closure of
Ty, 4(A4) with respect to the weak operator topology. Since the weak operator topology is
weaker than or equal to the norm topology, W*(4, V) is closed with respect to the norm
topology and contains C*(4, V). By the continuity of the multiplication Z(V) x B(V) —
(V) with respect to the norm topology, W*(4, V) is contained in the double commutant
End"E‘;‘(‘i‘?m(V)(V). By Proposition 2.1, W*(4, V) is a submetric Banach k-algebra, and V is a
submetric Banach left W*(4, V')-module by Proposition 2.4. We show a relation between
the semisimplicity of the representation module / and the discretely spectral property of
the operator algebra W*(4, V).
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Proposition 2.14. If W*(4, V) is discretely spectral (resp. stably discretely spectral) and
V vanishes at infinity as a submetric Banach left W*(A4, V)-module, then V is a semisimple
(resp. stably semisimple) submetric Banach left A-module.

In order to verify Proposition 2.14, we compare the isotypic property of a closed
W*(4, V)-submodule and that of its underlying Banach left 4-submodule.

Lemma 2.15. If W*(4, V) is discretely spectral (vesp. stably discretely spectral) and V
vanishes at infinity as a submetric Banach left W*(A, V)-module, then every simple (resp.
absolutely simple) Banach left W* (A4, V)-submodule of V is a finite dimensional simple
(resp. absolutely simple) Banach left A-module, and every isotypic (resp. stably isotypic)
submetric Banach left W*(A, V)-submodule of V is an isotypic (rvesp. a stably isotypic)
submetric Banach left A-module.

Proof. Put B := W*(4, V). Suppose that W*(4, V) is discretely spectral (resp. stably
discretely spectral) and V' vanishes at infinity as a Banach left W*(4, V)-module. Let
L c V be a simple (resp. an absolutely simple) Banach left W*(4, V)-submodule. By the
injectivity of I',4, there is an E € mo(B(1), k(1)) with EL = L. Since W*(4, V)/(1 —
EYW*(4, V) is finite dimensional, so is L by Proposition 1.12 (i). We have II; 3(B) =
IT; 4(A4) = C*(4, V) again by Proposition 1.12 (i). Therefore L is simple (resp. absolutely
simple) as a submetric Banach left 4-module.

Let W C V be an isotypic (resp. a stably isotypic) submetric Banach left B-submodule
of V. If W = {0}, then W is a stably isotypic submetric Banach left 4.-module. Assume
W # {0). By the injectivity of I'y, there is an £ € mo(B(1), k(1)) with EW # {0}.
By Proposition 2.12, EW is an isotypic submetric Banach left B-module admitting a
simple (resp. an absolutely simple) Banach left B-submodule L. In particular, we have
(1 — E)L = {0}. By Proposition 2.7, we obtain (1 — E)W = {0}. It implies EW = W.
By the argument above, L is a simple (resp. an absolutely simple) submetric Banach left
A-module. Since 7y, p is A-linear, W is an isotypic (resp. a stably isotypic) submetric
Banach left 4-module by Proposition 2.7 (ii). O

Proof of Proposition 2.14. Put B := W*(4, V). By Proposition 2.12 and Lemma 2.15,
EV c V is an isotypic (resp. a stably isotypic) submetric Banach left 4-submodule for
any E € my(B(1), k(1)). By the injectivity of lA"V, 4k V' 1s semisimple (resp. stably semisim-
ple). We verified that every simple (resp. absolutely simple) left A-submodule is finite
dimensional in the proof of Lemma 2.15. O

3 Semisimplicity and Reduction
Let k is a complete discrete valuation field with a uniformiser wy € k(1). We study rela-

tions between the semisimplicity of Banach k-algebras and that of their reductions, and
between the semisimplicity of Banach modules and that of their reductions regarded as
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modules over the reduction of the operator algebras associated to them. As an applica-
tion, we obtain an algorithm for determining whether a given finite dimensional unitary
Banach k-linear representation is semisimple of finite type or not.

3.1 Reductions of Banach Algebras

Let 4 € ob(Alg®*(k)). We give a criterion of the simplicity of 4 by using the reduction.

unit

Theorem 3.1. If 4 is a finite dimensional simple k-algebra (resp. a stably simple k-
algebra), then A is a finite dimensional simple unitary Banach k-algebra (resp. an or-
thogonally stably simple Banach k-algebra).

Proof. Suppose that 4 is a finite dimensional simple k-algebra. By Wedderburn’s the-
orem (cf. [AF92] 13.4 Theorem), there is an isomorphism M,(F) — A with n € N in
Alg(k) for some division k-algebra F, and every simple left A-module is isomorphic to
A = A ®y,r) F". Since 4 is semisimple, every left A-module is isomorphic to a direct
sum of copies of A.

We verify the simplicity of 4. Since A4 is simple, it is non-zero, and hence so is 4,
Therefore 4 admits a maximal left ideal ¢p C A. By Proposition 2.6, A/g forms a simple
Banach left 4-module. By Proposition 1.12 (ii), the canonical projection 4 —-» A/¢p
induces an isomorphism A/p — A/g in Vect(4). Let f € ker(ILyp.4). Assume f # 0.
By Proposition 1.13 (ii), there is a ¢ € £ with ¢f € A(1) \ A(1-). Since cf € A(1)
acts trivially on (4/¢)(1), so does cf + A(1-) € 4 on A/p. On the other hand, 4/ is
isomorphic to a direct sum of copies of A in Vect(4), and hence cf + A(1-) acts trivially
on A. It implies that ¢ f + 4(1-) lies in the Jacobson radical of 4, which is trivial by the
semisimplicity of 4. It contradicts ¢f ¢ A(1-). We obtain f = 0. Therefore I1, Jo.A 18
injective, and the underlying left 4-module of 4/¢ is a faithful simple left 4-module. By
Proposition 1.4, 4 is a finite dimensional simple unitary Banach k-algebra.

In addition, suppose F = k. By Wedderburn’s theorem, there is an isomorphism
M,,(K) — A with m € N\ {0} in Alg(k) for some division k-algebra K. Since 4 = M,,(k)
admits an (e;)?, € Idem(A4)" satisfying e; # 0 for any i € N N [1,x] and ee ;= 0 for
any (i, /) € (NN [1,n])* with i # j, A(1) admits an (E;)”, € Idem(A(1))" satisfying
Ei+A(1-) =¢; # O forany i € NN [l,n] and E;E; = 0 for any (i, j)) € (NN [1,7])* with
i # j by [Azu51] Theorem 24. It implies m > n. We have m? dim; D = dim; M,,(D) =
dim; 4 = dim;z = dimg M, (k) = n? by Proposition 1.13 (ii) and (v). Therefore we obtain
m = n and dimy; K = 1. It ensures that 4 is isomorphic in Alg(k) to M,,(k). We have (1 —
S E)+A(1-) =0 € 4,and hence 1 — 7, E; € A(1-). By the orthogonality of ()L,
1 - X", E;is an idempotent. Since every element of 4(1-) is topologically nilpotent, we
obtain 1 — Y, E; = 0. It implies A(1) = P, E:A(1) = @;’J:, E;A(1)E,. Since e;de; is
isomorphic to k in Vect(k), E;AE ;s isomorphic to k in Vectlz?"(k) by Proposition 1.12 (iii)
and Proposition 1.13 (ii) and (v), and hence E;A(1)E is isomorphic to k(1) in Vect(k(1))
for any (i, j) € (N N [1,n])*>. Therefore A(1) is isomorphic to M, (k(1)) in Alg(k(1)) by
[Azu51] Theorem 25. It implies that 4 is isomorphic to M,,(k) in Alg®(k). m|

<1
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We verify a relation between the discretely spectral property and the reduction.

Theorem 3.2. If 4 is a discretely spectral (resp. stably discretely spectral) k-algebra,
then A is a discretely spectral (resp. orthogonally stably discretely spectral) unitary Ba-
nach k-algebra. Moreover, the decomposition of A into simple (resp. orthogonally stably
simple) Banach k-algebras is given as the localisation of the decomposition of A(1) into
indecomposable projective two-sided ideals.

In order to verify Theorem 3.2, we introduce lifting properties of idempotents. It
is well-known that for any finite group G, the maps Idem(k(1)[G]) — Idem(k[G]) and
Idem(Z(k(1)[G])) — Idem(Z(k[G])) induced by the natural projection k(1)[G] - k[G]
are surjective. We consider a generalisation of the fact.

Proposition 3.3. Let B be a k-algebra, and By C B a k(1)-subalgebra with (2, @By =
{0}. Then the map 1ldem(By) — ldem(By/w;By) induced by the canonical projection
By - By/@By is surjective, and its restriction Idem(Z(By)) — Idem(Z(By/@;By)) is
bijective.

Proof. The first assertion follows from [Azu51] Theorem 24. We verify the surjectivity
of the map Idem(Z(By)) — Idem(Z(By/@By)). Let e € Idem(Z(By/w@By)). By the first
assertion, there is an £ € Idem(B,) with E + @By = e. We show E € Idem(Z(By)). Let
f € By. Assume EfE # fE. By (2, @By = {0}, there is a unique » € N such that
EfE - fE € w;By\w;"'By. Put /" := w"(EfE - fE) € By \ w,By. By € € Z(Bo/wBy),
we have Ef” — f'E € @;By. On the other hand, we have Ef” = w"(EfE — EfE) = 0,
fE=wo"(EfE - fE) = [, and hence E " — f'E = —f". This contradicts /" ¢ @;B,.
Therefore we obtain EfE = fE. Similarly the equality £fE = Ef holds. We obtain
fE = EfE = Ef. It implies E € Idem(Z(B,)). We show the injectivity. Let (E,E") €
Idem(Z(By))* with E + @By = E’ + wiBy. We have E(1 — E’) € Idem(Z(B,)) by
EE =FE'Eand E(1-E')=FE-EE = E(E—-FE’") € w;Byby E — E’ € w;By. It ensures
E(1 = E") = 0 by N2, @By = {0}. Similarly, we obtain (1 — E)E’ = 0. We conclude
E=EF =F. O

As a consequence, we obtain a lifting property of (central) idempotents for an unram-
ified Banach k-algebra.

Corollary 3.4. The reduction A(1) » A induces a surjective map Idem(A(1)) — Idem(4)
and bijective maps Idem(Z(A(1))) — Idem(Z(A)) and mo(A(1), k(1)) — no(4, k).

Proof. Since A is unramified, we have 4(1-) = w;A(1) by Proposition 1.13 (ii). The as-
sertion on Idem(-) follows from [Azu51] Theorem 24, and the assertion on Idem(Z(-))
follows from Proposition 3.3. Since the bijective map Idem(Z(4(1))) — Idem(Z(A)) pre-
serves the order given by inclusions of the principal two-sided ideals generated by idem-
potents, it preserves the primitivity. Therefore it induces a bijective map m(A(1), k(1)) —
mo(4, k) by Proposition 1.13. O

473



474

T. Mihara

Proof of Theorem 3.2. Suppose that 4 is a discretely spectral (resp. stably discretely
spectral) k-algebra. It suffices to verify that T'yz: 4 — I'(4,k) is an isomorphism in
AlgBa“(k), and A/(1 — E)A is simple (resp. stably simple) for any E € mo(A(1), k(1)). Let
E € mo(A(1), k(1)). We have A(1) = EA(1) ® (1 — E)A(1), and hence (1 — E)4A N A(1) =
(1 = E)A(1). Therefore the canonical projection 4 » 4/(1 — E)A induces an isomor-
phism (g1 A(1)/(1 = E)A(1) — (4/(1 — E)4)(1), and A/(1-E)4 E)A is isomorphic in Alg(k)
to A/(1 — e)A. In particular, 4/(1 — E)A is isomorphic in Alg(k) to 4/(1 — e)4 by Propo-
sition 1.12 (iii), and hence A/(1 — E)A is simple (resp. orthogonally stably simple) by
Theorem 3.1. We have ['(4, k)(1) = I'(A(1), k(1)) by definition. Therefore the inclu-
sion T(4(1), k(1)) < [(4, k) induces an isomorphism ¢: k ®k1y [(A(1), k(1)) — ['(4, k)
in Alg(k). The composite I o ¢ coincides with the localisation of Caayry: A1) —
I'(A(1), k&(1)). Therefore it suffices to verify the bijectivity of I'4) ), because the norm
on an unramified Banach k-vector space is uniquely determined by its closed unit disc.

Let f € ker(I'y1) k1)) Assume f # 0. By Proposition 1.13 (ii), there is a ¢ € k(1) \ {0}
with |c| = [|f]|. Then we have ¢™' /' € A(1)\ A(1-) and hence ¢™' f + A(1-) # 0 € 4. Since
A is discretely spectral, there is an e € 7(4, k) with ¢! f+A4(1-) ¢ (1—e)4. By Corollary
3.4, there is an E € mo(A(1), k(1)) with E + A(1-) = e. By ¢'f € 7 ker(T4q1yu1y) N
A1) c ker(Iyz) N A(1) = ker(I' 41y k1)), we have ¢™'f € (1 — E)A(1). It contradicts
¢ f+A(1-) ¢ (1 — e)4. It implies f = 0. Therefore T4y k(1) 18 injective.

Let ©o = (¢£)Eenayky € T(A(1), k(1)). By Corollary 3.4, the reduction A(1) - A
induces a bijective map ¢: mo(4(1), k(1)) — mo(4, k). Since 4 is discretely spectral, there
isan fi € A(1) with I'zz(fi + A(1-)) = (@10 + A(1-) + (1 = @A) ey iy € T4, 5).
Then we have ¢y — T4y x)(fi) = ci1¢:1 for a (c1,¢1) € k(1-) X I'(4(1), k(1)). Replacing
@0 by @1, we obtain an f, € A(1) with o1 = Lya)x1)(f2) = ca¢p2 for a (c2, ¢2) € k(1) X
[(A(1), k(1)). Repeating this process, we obtain a sequence (f;, ¢i, @), € (A(1)xk(1-)x
T(A(1), k(1)) with ¢; — FA(])k(l)(f+|) = Ciy1is1 forany i € N Since the valuation of k
is discrete, we have lim;_,e | []'Z! =1 ¢l = 0. Therefore hopas l(]—[ =1 ¢j)fi converges to an f €
A(1) by the completeness of 4 and the strong triangle inequality, and I"41) (/) coincides
with 372 ([T eNTaeuy(f) = Zi2o(ITies €)(@i — Cir1in1) = @o by the continuity of
FA(I),k(I)- Thus rA(l),k(l) is bijective. O

By Theorem 3.2 and Corollary 3.4, we obtain the following:

Corollary 3.5. If 4 is a semisimple (resp. stably semisimple) k-algebra, then A is a
semisimple (resp. orthogonally stably semisimple) unitary Banach k-algebra. Moreover,
the decomposition of A into simple (resp. orthogonally stably simple) Banach k-algebras
is given as the localisation of the decomposition of A(1) into indecomposable projective
two-sided ideals.

3.2 Reductions of Banach Modules

Let V' € ob(Vect?™(4)). The following is obvious but is remarkable because the same

does not necessarily hold when we consider a submetric Banach left 4-module which is
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not unitary:

Proposition 3.6. IV is a simple left C* (4, V)-module, then V is a simple unitary Banach
left A-module.

Proof. Since Visa simple left C*(4, V), we have ¥V # {0}. Therefore we obtain V # {0}.
Let L c V be a closed left A-submodule with L # {0}. By Proposition 1.11 (i) and
Proposition 1.13 (ii), we have L # {0}. Therefore the embedding L < ¥ induced by
the inclusion L < V is an isomorphism in Vect(C*(4, V)) by the assumption. Assume
L #V.Letve V\L. Since L is closed, there is an » € N\ {0} such that |[v —w|| > || V|
for any w € L. By Proposition 1.13 (ii), there is a ¢; € k* with |[v|| = |cy|. Take
av, € L with|[vq]] = 1 and c1‘1v+ V(l=) = v+ V(1-) € V. By v € V'\ L, we have
v—cyiv; € V'\ L. Replacing v by v—cyvy, we obtain a (¢c;, v») € KX L with |[v—cyvi|| = |ca]
and ;' (v—civ)+V(1-) = nm+V(1-) € V. Repeating this process, we obtain a sequence
(v € (RXLY with [Iv= 371 covll = lejland ¢;' (v= 221 cv)+ V(1=) = v+ V(1-) €
V for any j € NN [l,7]. Since V is unitary, we have V(1-) = @ V(1). It ensures
Ilv— >0, evill <@ l’lIvIl. This contradicts the choice of r. It implies L = V. Thus V' is a
simple unitary Banach left 4-module. O

We have a criterion of the isotypic property of a unitary Banach left 4-module by
using the reduction.

Proposition 3.7. If V is an isotypic (vesp. a stably isotypic) left C*(A, V)-module admit-
ting a finite dimensional simple (resp. absolutely simple) left C*(A, V)-submodule, then
V is an isotypic (resp. a stably isotypic) unitary Banach left A-module admitting a finite
dimensional simple (resp. absolutely simple) Banach left A-submodule.

Proof. Put B := C*(4, V). Suppose that V is an isotypic (resp. resp. a stably isotypic) left
B-module admitting a finite dimensional simple left B-submodule. Since B is a closed
k-subalgebra of (V'), we have Annz(¥) = {0} by Proposition 2.1. Therefore B is a finite
dimensional simple (resp. stably simple) k-algebra by Proposition 1.4. By Theorem 3.1,
B is a finite dimensional simple (resp. an orthogonally stably simple) Banach k-algebra
with dim B = dimy B. Therefore V is an isotypic (resp. a stably isotypic) unitary Banach
left 4-module admitting a finite dimensional simple (resp. absolutely simple) Banach left
A-submodule by Proposition 2.9. O

As a consequence, we obtain a criterion of the finite orthogonal type property of V.

Corollary 3.8. If V is a semisimple (vesp. stably semisimple) left C*(4, V)-module of
finite type and every simple (resp. absolutely simple) lefi C*(A4, V)-submodule of V is
finite dimensional, then V is a semisimple (resp. stably semisimple) unitary Banach left A-
module of finite orthogonal type such that every simple (resp. absolutely simple) Banach
left A-submodule of V is finite dimensional.
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Proof. If V' = {0}, then V is stably semisimple of finite orthogonal type admitting no
simple Banach left 4-submodule. Assume ¥ # {0}. Put B := C*(4, V). Suppose that V/
is a semisimple (resp. stably semisimple) left B-module of finite type and every simple
(resp. absolutely simple) left B-submodule of ¥ is finite dimensional. By Proposition
2.1, B is a unitary Banach k-algebra with Anng(l_/) = {0}. Therefore B is a finite di-
mensional semisimple k-algebra (resp. stably semisimple k-algebra) by Corollary 1.8. It
ensures that B is a finite dimensional semisimple (resp. stably semisimple) unitary Ba-
nach k-algebra and the decomposition of B into simple (resp. orthogonally stably simple)
Banach k-algebras is given as the localisation of the decomposition of B(1) into indecom-
posable projective two-sided ideals by Corollary 3.5. Therefore B coincides with ITy,4(A4)
by Proposition 1.12 (i), and ¥ is isomorphic in Ban"!(B) to the direct sum of a finite
family of isotypic (resp. stably isotypic) unitary Banach left B-modules by Proposition
2.5 and Proposition 3.7. It implies that V' is semisimple (resp. stably semisimple) of finite
orthogonal type. O

We recall that the aim of this paper is to establish an algorithm for determining a
variant of the semisimplicity of a unitary Banach k-linear representation of a topological
monoid. Although the converses of the propositions above do not necessarily hold, we
have a criterion for the orthogonal stably semisimplicity.

Proposition 3.9. Suppose that V is finite dimensional. Then V is an absolutely sim-
ple (resp. orthogonally stably isotypic, orthogonally stably semisimple) unitary Banach
left A-module if and only if V is an absolutely simple (resp. a stably isotypic, a stably
semisimple) left C*(A, V)-module.

Proof. If that V is absolutely simple, then ¥ is isomorphic in Vect(C*(4, V)) O, B k" for
an isomorphism M,,(k) — C*(4, V) in Alg>%(k) by Lemma 2.10, and hence is an abso-
lutely simple left Cs#(4, V)-module by Proposition 1.6. Therefore if V' is an orthogonally
stably isotypic (resp. orthogonally stably semisimple) unitary Banach left 4-module, then
V is a stably isotypic (resp. stably semisimple) left C*(4, ')-module because V is iso-
morphic in Vect(C*(4, V)) with the direct sum in Vect(C*(4, V)) of the reductions of the
absolutely simple unitary Banach 4-submodules appearing in an orthogonal direct sum
decomposition of V.

If V is a stably isotypic (resp. stably semisimple) left C*(4, ¥)-module, ¥ is an or-
thogonally stably isotypic (resp. orthogonally stably semisimple) unitary Banach left 4-
module by Proposition 3.7. Suppose that V is an absolutely simple left C*(4, ¥)-module.
Then V is an orthogonally stably isotypic unitary Banach left 4-module. Since V ad-
mits exactly two left C*(4, V)-submodules, /' admits exactly two closed left C*(4, V)-
submodules by Proposition 1.12 (ii) and Proposition 1.13 (ii) and (v). Therefore V is an
absolutely simple unitary Banach left 4-module. O

Finally, we consider a criterion of the semisimplicity of /' by using the reduction of
the bigger operator algebra W*(4, V).
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Proposition 3.10. If W*(4, V) is a discretely spectral (resp. stably discretely spectral)
k-algebra and V vanishes at infinity as a left W*(A, V)-module, then V is a semisimple
(resp. stably semisimple) unitary Banach left A-module.

Proof. Put B := W*(4, V). Suppose that B is a discretely spectral (resp. stably discretely
spectral) k-algebra. By Theorem 3.2, B is a discretely spectral (resp. orthogonally stably
discretely spectral) unitary Banach k-algebra and the decomposition of B into simple
(resp. orthogonally stably simple) Banach k-algebras is given as the localisation of the
decomposition of B(1) into indecomposable projective two-sided ideals. We show that V/
vanishes at infinity as a unitary Banach left B-module. Let v € V'\{0}. By Proposition 1.13
(i), there is a ¢ € kK* with |[v[| = |c|. By the injectivity of 77537, there is an e € 7o(B, %)
with e(c”'v + V(1-)) # 0 € V. By Corollary 3.4, there is an E € mo(B(1), k(1)) with
E + A(1-) = e. We obtain Ev = c¢(Ec™'v) # 0. It implies that 7y 5 is injective. Therefore
V' is semisimple (resp. stably semisimple) by Proposition 2.14. O

3.3 Reductions of Banach Representations

We apply the results in §3.2 to a unitary Banach k-linear representation of a topological
monoid G. Since the irreducibility and the semisimplicity of a given unitary Banach
k-linear representation of G are preserved even if the topology on G is replaced by the
discrete topology, we start with a unitary Banach k-linear representation of a discrete
monoid.

Let Gy be a monoid. We endow G, with the discrete topology so that the notion of
a unitary Banach k-linear representation of Gy makes sense. The k-algebra structure of
k[G,] extends to Co(Gy, k) through the natural embedding k[G,] = k®%° < Cy(Gj, k), and
Co(Gy, k) forms a Banach k-algebra. The induced multiplication Cy(Gy, k) X Co(Gy, k) —
Co(Go, k), (f,f) — f = f can be described in the following way: Let ((f, f"),g) €
Co(Go, k)* x Go. Put Hy = {(h, ) € G} | ki’ = g}. Then (f * f")(g) is given as the limit
Zniner, S f'(0') of the converging net (X, yes /(h) S (h))scr, #s < indexed by the set
of finite subsets S C H, ordered by inclusions. We note that Cy(Gy, k) coincides with the
set of functions f: Gy — kwith #{h € Gy | |f(h)| > €} < oo for any € € (0, o), and hence
{h € Go | f(h) # 0}is a countable set for any /"€ Co(Go, k). Therefore 3., e, f(h)f'(7')
is an essentially countable sum for any ((£, 17), ) € Co(Go, k)*xG,. By the universality of
the direct sum in Vectz‘;‘“(k) and the continuity of the natural embedding Gy — Cy(Gy, k),
we obtain a natural equivalence d¢, s : Vect®®(Gy, k) — Vect?(Cy(Go, k)) preserving the
underlying Banach k-vector space.

Let (V,p) € ob(Vect™(Go.k)). We put C'(G.(V.p) = C'(Co(Go.K). dayulV. ).
Since the underlying Banach k-vector space of ¢, «(V,p) is V, C(G, (¥, p)) is unitary
by Proposition 2.1, and (¥, p) is irreducible (resp. isotypic, semisimple of finite orthog-
onal type, semisimple, absolutely irreducible, stably isotypic, stably semisimple of fi-
nite orthogonal type, stably semisimple, orthogonally stably isotypic, orthogonally sta-

bly semisimple) if and only is ¢¢,+(¥;p) is simple (resp. isotypic, semisimple of finite
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orthogonal type, semisimple, absolutely simple, stably isotypic, stably semisimple of fi-
nite orthogonal type, stably semisimple, orthogonally stably isotypic, orthogonally stably
semisimple). Therefore by Remark 1.10, Proposition 3.7, Proposition 3.9, Corollary 3.5,
and Corollary 1.5, we obtain the following:

Proposition 3.11. The following hold:

(i) If d6,4(V, p) is a finite dimensional simple left C*(Go, (V, p))-module, then (V, p) is
a finite dimensional irreducible unitary Banach k-linear representation of G.

(ii) If dG,4(V, p) is an isotypic left C*(Go, (V, p))-module admitting a finite dimensional
simple left C* (G, (V, p))-submodule, then (V,p) is an isotypic (resp. a stably iso-
typic) unitary Banach k-linear representation of G,.

(iii) If p,x(V, p) is a semisimple left C*(Gy, (V, p))-module of finite type and every sim-
ple left C*(Gy, (V. p))-submodule of g, (V. p) is finite dimensional, then (V. p) is a
semisimple unitary Banach k-linear representation of G, of finite orthogonal type.

(iv) Suppose that V is finite dimensional. Then (V, p) is an absolutely irreducible (resp.
orthogonally stably isotypic, orthogonally stably semisimple) unitary Banach k-

linear representation of Gy if and only if ¢, (V. p) is an absolutely simple (resp. a
stably isotypic, a stably semisimple) left C*(Gy, (V, p))-module.

The map k[Gy] — C*(Gy, (V,p)) induced by the isomorphism k[Gy] — Co(Go, k) in
Proposition 1.11 (i) is not necessarily surjective, and hence the left C*(Gy, (¥, p))-module

structure on ¢g, «(V, p) possibly possesses more information than the structure of the re-
duction (¥, p) as the smooth k-linear representation of G,. One of the critical problem

in applications of Proposition 3.11 is the difficulty of the computation of ¢g, «(V,p). In
order to avoid the difficulty, we restrict the classes of k and topological monoids.

Definition 3.12. A profinite group G is said to be a p-adic group if G admits a decreasing
sequence (G,),en of open normal pro-p subgroups of G such that G, is contained in the
closure of the normal subgroup generated by {g” | g € G} for any r € N.

For example, for a profinite group G, if there is a pair (H, x) of an open pro-p subgroup
H c G and a sequence x = (x,-)id:] € HY with d € N such that every g € H is presented as
the ordered product ]—[,‘.’:] x{" with (a,-),”.’: , € ZZ, then G is p-adic. In particular, we obtain

the following by [Laz65] 11 2.2.3 Lemme, 11 2.2.6 Proposition, and III 3.1.3 Proposition:
Example 3.13. Every compact p-adic Lie group is a p-adic group.

Henceforth, suppose that & is a local field, i.e. a complete discrete valuation field with
#k < co. We denote by 74: k < k(1) the unique Teichmiiller lift. Let G be a p-adic
group. We fix a decreasing sequence (G,),«n of open normal pro-p subgroups of G such
that G, is contained in the closure of the normal subgroup generated by {g” | g € Gy} for
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any » € N. Take a complete system I'y C G of representatives of the canonical projection
G » G/G, with 1 €Iy. Forans € N and a " c G, we denote by Ar; C k(1)[G] the
image of the map (""" — k(D[G], ((cgi)io)eer P Lger(Zi-o Ti(ce.)@})[g], which is
a finite set as long as so is I".

In order to describe algorithms, we prepare the convention. We denote by Rep
the class of pairs (1, (¥, p)) of an n € N\ {0} and a (V,p) € ob(Vect?®(G, k)) with
dim; V = n. Letn € N. For an s € N, we denote by r,; € N the integer such that
p™ is the maximum of the orders of p-torsion elements of GL,,(k(l)/w,i”k(l)). Let
(K", p) € ob(Vect?®(G, k)). We put 1, = {f € k[G] | BS(p)(/)(V(1)) c V(1)}. By the
definition of r,,, {g — 1 | g € G,,,} C k(1)[G] is contained in Ay N @;1,. We denote by
BS(p): L@, — M, (k) the natural extension of BS(p). For a finite subset S 1,, we
denote by Bs ¢ M,,(k") the k-algebra generated by {BS(0)(f) | f € S}. We introduce two

processes (R1) and (R2).

The input data for the process (R1) is an (n, (V, p)) € Rep with V' = k". The process
(R1) runs in the following way:

(i) PutR:={1} cG, =Ty cG,s:=0€N,and S := Ar,o C 1.
(i) If Bs = M,,(k), then go to (V).

(iii)) Replace R by a complete system of representatives of the canonical projection
Gy » G,/Gg, T by the finite set {gh | (g,h) € X R}, s by s + 1, and S by
the finite set {f € @ *4Ar, | Af € § N ker(BS (0)), wif — f € wik(1)[G] +
Yner @ R(DIG](h — 1)),

(iv) Go to (ii).
(v) Stop the process.

In the process (R1), S grows as finite subsets of /,, and Bs grows as k-subalgebras of

M, (k). Since M, (k) is finite dimensional, Bs forms an increasing sequence which is
eventually constant. By Proposition 1.6 and Proposition 3.11 (iv), we obtain the follow-
ing:

Theorem 3.14. The process (R1) stops if and only if (V, p) is an absolutely simple unitary
Banach k-linear representation of G.

The input data for the process (R2) is an (n, (V, p)) € Rep. The process (R2) runs in
the following way:

(i) Replace (n, (V,p)) by (n,(V’,p’)) € Rep with V" = k" such that (¥, p) is isometri-
cally isomorphic to (V7, p’).

(i) PutR ={1} c G, I' =TIy cG,s =0€N,S =4 Cl,and E =1 €
Idem(M,,(k(1))).
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(iii) If By is a stably simple k-algebra, then go to (vii).
(iv) If Bs is not stably semisimple k-algebra, then go to (ix).

(v) Search the finite set Bs for an e € my(Bs, k), take an element E, of the k(1)-
subalgebra of M,,(k(1)) generated by {BS(p)(s) | s € S} with £y + M,,(k)(1-) = e,
and replace E by the limit £” € ldem(M,,(k(1))) of the sequence (£,,),en € M,,(k(1))
defined by E,,; := 3E2 - 2E> for each n € N.

(vi) If E is G-equivariant, then go to (xi). Otherwise, go to (ix).

(vii) Ifrankp V' = 1, then go to (xii).

" of the free left Bs-

. S : . rank
(viii) Search the finite set V™" for a Bg-linear basis (vj);.inl &

rankgg V 7 rankgg V

s e prkasT I (DG 0 2" K(D[Gy, =

{0}, then replace E by the projection V' = k[G]v; & Z;inzk s 7k[G]v i = k[G]vy, and
go to (xi).

module 7, and take a lift (v )

(ix) Replace R by a complete system of representatives of the canonical projection
Gy » G,/Ggy, T by the finite set {gh | (g,h) € [ X R}, s by s + 1, and S by
the finite set {f € @ *4Ar, | Af € § N ker(BS (p)), wif — f € wik(1)[G] +
Yner @ K(DIG(h ~ 1)).

(x) Go to (iii).

(xi) Output (dimy EV, (EV, p)) and (dim(1 — E)V, (1 = E)V,p)), and go to (xiii).
(xii) Output (m, (V, p)).
(xiii) Stop the process.

We note that the step (v) is a well-known construction of a lift of an idempotent (cf. the
proof of [Mih16] Theorem 3.11). By Corollary 3.4, Corollary 3.5, and Proposition 3.11
(iv), we obtain the following:

Proposition 3.15. The process (R2) stops if and only if (V,p) is an absolutely simple
unitary Banach k-linear representation of G or is the orthogonal direct sum of two non-
zero G-stable k-vector subspaces.

We establish an algorithm (RR) for determining whether a unitary Banach k-linear
representation of G is orthogonally stably semisimple or not. The input data for the
process (RR) is an (n, (V; p)) € Rep. The process (RR) runs in the following way:

(i) Putm:=1€N\{0),i:= 1€ NA[1,m],t:=0€N,o = (07)", = (n.(V.p)) € Rep”,
and X := (0, 0) € Rep”.
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(i) Execute (R2) with input data o, replace ¢ by the number of the outputs, and X €
Rep? by the ordered pair of the outputs if 7 = 2.

(iii) If ¢ = 1, then go to (vi).

(iv) Replace m by m + 1, and o~ by the sequence o = (07 ) € Rep™ given by setting

o = o foreach j € NN [l,i-1], (¢07,07,) = X, and 07, = 0 for each

jeNN[i+2,m].
(v) Go to (ii).
(vi) If i = m, then go to (ix).
(vii) Replaceiby i+ 1.
(viii) Go to (ii).
(ix) Output o
(x) Stop the process.
By Proposition 3.15, we obtain the following:

Theorem 3.16. The algorithm (RR) stops if and only if (V,p) is orthogonally stably
semisimple, in which case (V, p) is isometrically isomorphic to the orthogonal direct sum
of the unitary Banach k-linear representations of G in the output.

Theorem 3.16 is a generalisation of [Mih16] Theorem 3.23 on the algorithm with a
repetition of reductions for determining whether a given matrix over & is diagonalisable
by a unitary matrix (cf. [Mih16] p. 762) or not. Indeed, the unitary diagonalisability of
an M € M, (k) is equivalent to the orthogonal stable semisimplicity of the unitary Banach
k-linear representation Z, X k" — k", (a,v) — (1 + w};“ “v of Z,, for a sufficiently large
r € N with @] M € M, (k(1)).
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